Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Photochem Photobiol B ; 247: 112785, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37714000

RESUMEN

Photodynamic therapy (PDT) represents an interesting modality for the elimination of damaged biomaterials and cells. This treatment takes advantage of the photosensitizing properties of molecules that are active only when irradiated with light. In the present work, a dual property of hypericin, a hydrophobic molecule with high performance in photodiagnostics and photodynamic therapy, was exploited. The non-fluorescent and photodynamically inactive form of hypericin aggregates was loaded into the nanopores of SBA-15 silica particles. The synthesized particles were characterized by infrared spectroscopy, thermogravimetry, differential thermal analysis, small-angle X-ray scattering and transmission electron microscopy. Hypericin aggregates were confirmed by absorption spectra typical of aggregated hypericin and by its short fluorescence lifetime. Release of hypericin from the particles was observed toward serum proteins, mimicking physiological conditions. Temperature- and time-dependent uptake of hypericin by cancer cells showed gradual release of hypericin from the particles and active cellular transport by endocytosis. A closer examination of SBA-15-hypericin uptake by fluorescence lifetime imaging showed that aggregated hypericin molecules, characterized by a short fluorescence lifetime (∼4 ns), were still present in the SBA-15 particles upon uptake by cells. However, monomerization of hypericin in cancer cells was observed by extending the hypericin fluorescence lifetime by ∼8 ns, preferentially in lipid compartments and the plasma membrane. This suggests a promising prognosis for delayed biological activity of the entire cargo, which was confirmed by effective PDT in vitro. In summary, this work presents an approach for safe, inactive delivery of hypericin that is activated at the target site in cells and tissues.


Asunto(s)
Nanoporos , Neoplasias , Perileno , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fotoquimioterapia/métodos , Antracenos , Dióxido de Silicio , Perileno/química , Neoplasias/tratamiento farmacológico
2.
J Biol Chem ; 299(2): 102896, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36639026

RESUMEN

We found previously that nuclear receptors (NRs) compete for heterodimerization with their common partner, retinoid X receptor (RXR), in a ligand-dependent manner. To investigate potential competition in their DNA binding, we monitored the mobility of retinoic acid receptor (RAR) and vitamin D receptor (VDR) in live cells by fluorescence correlation spectroscopy. First, specific agonist treatment and RXR coexpression additively increased RAR DNA binding, while both agonist and RXR were required for increased VDR DNA binding, indicating weaker DNA binding of the VDR/RXR dimer. Second, coexpression of RAR, VDR, and RXR resulted in competition for DNA binding. Without ligand, VDR reduced the DNA-bound fraction of RAR and vice versa, i.e., a fraction of RXR molecules was occupied by the competing partner. The DNA-bound fraction of either RAR or VDR was enhanced by its own and diminished by the competing NR's agonist. When treated with both ligands, the DNA-bound fraction of RAR increased as much as due to its own agonist, whereas that of VDR increased less. RXR agonist also increased DNA binding of RAR at the expense of VDR. In summary, competition between RAR and VDR for RXR is also manifested in their DNA binding in an agonist-dependent manner: RAR dominates over VDR in the absence of agonist or with both agonists present. Thus, side effects of NR-ligand-based (retinoids, thiazolidinediones) therapies may be ameliorated by other NR ligands and be at least partly explained by reduced DNA binding due to competition. Our results also complement the model of NR action by involving competition both for RXR and for DNA sites.


Asunto(s)
Receptores de Calcitriol , Receptores de Ácido Retinoico , Receptores X Retinoide , ADN/metabolismo , Ligandos , Receptores de Calcitriol/química , Receptores de Calcitriol/metabolismo , Receptores Citoplasmáticos y Nucleares , Receptores X Retinoide/química , Receptores X Retinoide/metabolismo , Tretinoina/farmacología , Receptores de Ácido Retinoico/química , Receptores de Ácido Retinoico/metabolismo
3.
Sci Rep ; 12(1): 8087, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35577872

RESUMEN

Doxorubicin (Dox), a widely used anticancer DNA-binding drug, affects chromatin in multiple ways, and these effects contribute to both its efficacy and its dose-limiting side effects, especially cardiotoxicity. Here, we studied the effects of Dox on the chromatin binding of the architectural proteins high mobility group B1 (HMGB1) and the linker histone H1, and the transcription factor retinoic acid receptor (RARα) by fluorescence recovery after photobleaching (FRAP) and fluorescence correlation spectroscopy (FCS) in live cells. At lower doses, Dox increased the binding of HMGB1 to DNA while decreasing the binding of the linker histone H1. At higher doses that correspond to the peak plasma concentrations achieved during chemotherapy, Dox reduced the binding of HMGB1 as well. This biphasic effect is interpreted in terms of a hierarchy of competition between the ligands involved and Dox-induced local conformational changes of nucleosome-free DNA. Combined, FRAP and FCS mobility data suggest that Dox decreases the overall binding of RARα to DNA, an effect that was only partially overcome by agonist binding. The intertwined interactions described are likely to contribute to both the effects and side effects of Dox.


Asunto(s)
Proteína HMGB1 , Histonas , Cromatina , ADN , Doxorrubicina/farmacología , Proteína HMGB1/metabolismo , Histonas/metabolismo , Receptores de Ácido Retinoico/metabolismo
4.
Int J Mol Sci ; 23(6)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35328733

RESUMEN

Voltage-gated Kv1.3 potassium channels are essential for maintaining negative membrane potential during T-cell activation. They interact with membrane-associated guanylate kinases (MAGUK-s) via their C-terminus and with TCR/CD3, leading to enrichment at the immunological synapse (IS). Molecular interactions and mobility may impact each other and the function of these proteins. We aimed to identify molecular determinants of Kv1.3 mobility, applying fluorescence correlation spectroscopy on human Jurkat T-cells expressing WT, C-terminally truncated (ΔC), and non-conducting mutants of mGFP-Kv1.3. ΔC cannot interact with MAGUK-s and is not enriched at the IS, whereas cells expressing the non-conducting mutant are depolarized. Here, we found that in standalone cells, mobility of ΔC increased relative to the WT, likely due to abrogation of interactions, whereas mobility of the non-conducting mutant decreased, similar to our previous observations on other membrane proteins in depolarized cells. At the IS formed with Raji B-cells, mobility of WT and non-conducting channels, unlike ΔC, was lower than outside the IS. The Kv1.3 variants possessing an intact C-terminus had lower mobility in standalone cells than in IS-engaged cells. This may be related to the observed segregation of F-actin into a ring-like structure at the periphery of the IS, leaving much of the cell almost void of F-actin. Upon depolarizing treatment, mobility of WT and ΔC channels decreased both in standalone and IS-engaged cells, contrary to non-conducting channels, which themselves caused depolarization. Our results support that Kv1.3 is enriched at the IS via its C-terminal region regardless of conductivity, and that depolarization decreases channel mobility.


Asunto(s)
Canal de Potasio Kv1.3/metabolismo , Linfocitos T , Actinas/metabolismo , Humanos , Canal de Potasio Kv1.3/genética , Potenciales de la Membrana , Sinapsis/metabolismo , Linfocitos T/metabolismo
5.
Pharmaceutics ; 15(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36678647

RESUMEN

The antimicrobial effect of chitosan and synthetic chitosan derivatives has been confirmed on many Gram-positive and Gram-negative bacteria and fungi. The tests were carried out on pathogenic microorganisms, so the mechanism and concentration dependence of the inhibitory effect of chitosan were revealed. We conducted our tests on a probiotic strain, Lactobacillus plantarum. Commercially available chitosan derivatives of different molecular weights were added to L. plantarum suspension in increasing concentrations. The minimum inhibitory concentration (MIC) value of chitosan was determined and confirmed the viability decreasing effect at concentrations above the MIC with a time-kill assay. The release of bacterium cell content was measured at 260 nm after treatment with 0.001-0.1% concentration chitosan solution. An increase in the permeability of the cell membrane was observed only with the 0.1% treatment. The interaction was also investigated by zeta potential measurement, and the irreversible interaction and concentration dependence were established in all concentrations. The interaction of fluorescein isothiocyanate (FITC) labeled low molecular weight chitosan and bacterial cells labeled with membrane dye (FM® 4-64) was confirmed by confocal microscopy. In conclusion, the inhibitory effect of chitosan was verified on a probiotic strain, which is an undesirable effect in probiotic preparations containing chitosan additives, while the inhibitory effect experienced with pathogenic strains is beneficial.

6.
Int J Mol Sci ; 22(23)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34884773

RESUMEN

STAT3 is a transcription factor that regulates various cellular processes with oncogenic potential, thereby promoting tumorigenesis when activated uncontrolled. STAT3 activation is mediated by its tyrosine phosphorylation, triggering dimerization and nuclear translocation. STAT3 also contains a serine phosphorylation site, with a postulated regulatory role in STAT3 activation and G2/M transition. Interleukin-6, a major activator of STAT3, is present in elevated concentrations in uveal melanomas, suggesting contribution of dysregulated STAT3 activation to their pathogenesis. Here, we studied the impact of chelidonine on STAT3 signaling in human uveal melanoma cells. Chelidonine, an alkaloid isolated from Chelidonium majus, disrupts microtubules, causes mitotic arrest and provokes cell death in numerous tumor cells. According to our flow cytometry and confocal microscopy data, chelidonine abrogated IL-6-induced activation and nuclear translocation, but amplified constitutive serine phosphorylation of STAT3. Both effects were restricted to a fraction of cells only, in an all-or-none fashion. A partial overlap could be observed between the affected subpopulations; however, no direct connection could be proven. This study is the first proof on a cell-by-cell basis for the opposing effects of a microtubule-targeting agent on the two types of STAT3 phosphorylation.


Asunto(s)
Benzofenantridinas/farmacología , Alcaloides de Berberina/farmacología , Melanoma/patología , Factor de Transcripción STAT3/metabolismo , Neoplasias de la Úvea/patología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Humanos , Interleucina-6/metabolismo , Microtúbulos/metabolismo , Fosforilación/efectos de los fármacos , Serina/metabolismo , Transducción de Señal/efectos de los fármacos , Tirosina/metabolismo
7.
J Immunol ; 207(10): 2489-2500, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34654688

RESUMEN

IL-15 plays a pivotal role in the long-term survival of T cells and immunological memory. Its receptor consists of three subunits (IL-15Rα, IL-2/15Rß, and γc). IL-15 functions mainly via trans-presentation (TP), during which an APC expressing IL-15 bound to IL-15Rα presents the ligand to the ßγc receptor-heterodimer on a neighboring T/NK cell. To date, no direct biophysical evidence for the intercellular assembly of the IL-15R heterotrimer exists. Ag presentation (AP), the initial step of T cell activation, is also based on APC-T cell interaction. We were compelled to ask whether AP has any effect on IL-15 TP or whether they are independent processes. In our human Raji B cell-Jurkat T cell model system, we monitored inter-/intracellular protein interactions upon formation of IL-15 TP and AP receptor complexes by Förster resonance energy transfer measurements. We detected enrichment of IL-15Rα and IL-2/15Rß at the synapse and positive Förster resonance energy transfer efficiency if Raji cells were pretreated with IL-15, giving direct biophysical evidence for IL-15 TP. IL-15Rα and MHC class II interacted and translocated jointly to the immunological synapse when either ligand was present, whereas IL-2/15Rß and CD3 moved independently of each other. IL-15 TP initiated STAT5 phosphorylation in Jurkat cells, which was not further enhanced by AP. Conversely, IL-15 treatment slightly attenuated Ag-induced phosphorylation of the CD3ζ chain. Our studies prove that in our model system, IL-15 TP and AP can occur independently, and although AP enhances IL-15R assembly, it has no significant effect on IL-15 signaling during TP. Thus, IL-15 TP can be considered an autonomous, Ag-independent process.


Asunto(s)
Presentación de Antígeno/inmunología , Interleucina-15/inmunología , Activación de Linfocitos/inmunología , Línea Celular , Humanos
8.
J Vis Exp ; (170)2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33970141

RESUMEN

Förster Resonance Energy Transfer (FRET) is the radiationless transfer of energy from an excited donor to an acceptor molecule and depends upon the distance and orientation of the molecules as well as the extent of overlap between the donor emission and acceptor absorption spectra. FRET permits to study the interaction of proteins in the living cell over time and in different subcellular compartments. Different intensity-based algorithms to measure FRET using microscopy have been described in the literature. Here, a protocol and an algorithm are provided to quantify FRET efficiency based on measuring both the sensitized emission of the acceptor and quenching of the donor molecule. The quantification of ratiometric FRET in the living cell not only requires the determination of the crosstalk (spectral spill-over, or bleed-through) of the fluorescent proteins but also the detection efficiency of the microscopic setup. The protocol provided here details how to assess these critical parameters.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Proteínas/análisis , Animales , Supervivencia Celular , Microscopía , Ratas
9.
J Biol Chem ; 295(29): 10045-10061, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32513869

RESUMEN

Retinoid X receptor (RXR) plays a pivotal role as a transcriptional regulator and serves as an obligatory heterodimerization partner for at least 20 other nuclear receptors (NRs). Given a potentially limiting/sequestered pool of RXR and simultaneous expression of several RXR partners, we hypothesized that NRs compete for binding to RXR and that this competition is directed by specific agonist treatment. Here, we tested this hypothesis on three NRs: peroxisome proliferator-activated receptor gamma (PPARγ), vitamin D receptor (VDR), and retinoic acid receptor alpha (RARα). The evaluation of competition relied on a nuclear translocation assay applied in a three-color imaging model system by detecting changes in heterodimerization between RXRα and one of its partners (NR1) in the presence of another competing partner (NR2). Our results indicated dynamic competition between the NRs governed by two mechanisms. First, in the absence of agonist treatment, there is a hierarchy of affinities between RXRα and its partners in the following order: RARα > PPARγ > VDR. Second, upon agonist treatment, RXRα favors the liganded partner. We conclude that recruiting RXRα by the liganded NR not only facilitates a stimulus-specific cellular response but also might impede other NR pathways involving RXRα.


Asunto(s)
PPAR gamma/metabolismo , Multimerización de Proteína , Receptores de Calcitriol/metabolismo , Receptor alfa de Ácido Retinoico/metabolismo , Receptor alfa X Retinoide/metabolismo , Células HEK293 , Humanos , PPAR gamma/genética , Receptores de Calcitriol/genética , Receptor alfa de Ácido Retinoico/genética , Receptor alfa X Retinoide/genética
10.
Int J Mol Sci ; 21(5)2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-32106594

RESUMEN

The immunological synapse (IS) is a specialized contact area formed between a T cell and an antigen presenting cell (APC). Besides molecules directly involved in antigen recognition such as the TCR/CD3 complex, ion channels important in the membrane potential and intracellular free Ca2+ concentration control of T cells are also recruited into the IS. These are the voltage-gated Kv1.3 and Ca2+-activated KCa3.1 K+ channels and the calcium release-activated Ca2+ channel (CRAC). However, the consequence of this recruitment on membrane potential and Ca2+ level control is not known. Here we demonstrate that the membrane potential (MP) of murine T cells conjugated with APCs in an IS shows characteristic oscillations. We found that depolarization of the membrane by current injection or by increased extracellular K+ concentration produced membrane potential oscillations (MPO) significantly more frequently in conjugated T cells than in lone T cells. Furthermore, oscillation of the free intracellular Ca2+ concentration could also be observed more frequently in cells forming an IS than in lone cells. We suggest that in the IS the special arrangement of channels and the constrained space between the interacting cells creates a favorable environment for these oscillations, which may enhance the signaling process leading to T cell activation.


Asunto(s)
Señalización del Calcio , Sinapsis Inmunológicas/metabolismo , Potenciales de la Membrana , Linfocitos T/metabolismo , Animales , Células Presentadoras de Antígenos/metabolismo , Células Presentadoras de Antígenos/fisiología , Calcio/metabolismo , Canales de Calcio Activados por la Liberación de Calcio/metabolismo , Línea Celular , Sinapsis Inmunológicas/fisiología , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Canal de Potasio Kv1.3/metabolismo , Ratones , Potasio/metabolismo , Linfocitos T/fisiología
11.
Life (Basel) ; 11(1)2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33383642

RESUMEN

Biological membranes were originally described as a fluid mosaic with uniform distribution of proteins and lipids. Later, heterogeneous membrane areas were found in many membrane systems including cyanobacterial thylakoids. In fact, cyanobacterial pigment-protein complexes (photosystems, phycobilisomes) form a heterogeneous mosaic of thylakoid membrane microdomains (MDs) restricting protein mobility. The trafficking of membrane proteins is one of the key factors for long-term survival under stress conditions, for instance during exposure to photoinhibitory light conditions. However, the mobility of unbound 'free' proteins in thylakoid membrane is poorly characterized. In this work, we assessed the maximal diffusional ability of a small, unbound thylakoid membrane protein by semi-single molecule FCS (fluorescence correlation spectroscopy) method in the cyanobacterium Synechocystis sp. PCC6803. We utilized a GFP-tagged variant of the cytochrome b6f subunit PetC1 (PetC1-GFP), which was not assembled in the b6f complex due to the presence of the tag. Subsequent FCS measurements have identified a very fast diffusion of the PetC1-GFP protein in the thylakoid membrane (D = 0.14 - 2.95 µm2s-1). This means that the mobility of PetC1-GFP was comparable with that of free lipids and was 50-500 times higher in comparison to the mobility of proteins (e.g., IsiA, LHCII-light-harvesting complexes of PSII) naturally associated with larger thylakoid membrane complexes like photosystems. Our results thus demonstrate the ability of free thylakoid-membrane proteins to move very fast, revealing the crucial role of protein-protein interactions in the mobility restrictions for large thylakoid protein complexes.

12.
Anal Chem ; 92(2): 2207-2215, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31870146

RESUMEN

Single Plane Illumination Microscopy (SPIM) revolutionized time lapse imaging of live cells and organisms due to its high speed and reduced photodamage. Quantitative mapping of molecular (co)mobility by fluorescence (cross-)correlation spectroscopy (F(C)CS) in a SPIM has been introduced to reveal molecular diffusion and binding. A complementary aspect of interactions is proximity, which can be studied by Förster resonance energy transfer (FRET). Here, we extend SPIM-FCCS by alternating laser excitation, which reduces false positive cross-correlation and facilitates comapping of FRET. Thus, different aspects of interacting systems can be studied simultaneously, and molecular subpopulations can be discriminated by multiparameter analysis. After demonstrating the benefits of the method on the AP-1 transcription factor, the dimerization and DNA binding behavior of retinoic acid receptor (RAR) and retinoid X receptor (RXR) is revealed, and an extension of the molecular switch model of the nuclear receptor action is proposed. Our data imply that RAR agonist enhances RAR-RXR heterodimerization, and chromatin binding/dimerization are positively correlated. We also propose a ligand induced conformational change bringing the N-termini of RAR and RXR closer together. The RXR agonist increased homodimerization of RXR suggesting that RXR may act as an autonomous transcription factor.


Asunto(s)
ADN/química , Receptores de Ácido Retinoico/química , Receptores X Retinoide/química , Sitios de Unión , Dimerización , Transferencia Resonante de Energía de Fluorescencia , Células HeLa , Humanos , Microscopía Fluorescente , Receptores de Ácido Retinoico/agonistas , Células Tumorales Cultivadas
13.
PLoS One ; 14(11): e0224936, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31747397

RESUMEN

The restricted access of regulatory factors to their binding sites on DNA wrapped around the nucleosomes is generally interpreted in terms of molecular shielding exerted by nucleosomal structure and internucleosomal interactions. Binding of proteins to DNA often includes intercalation of hydrophobic amino acids into the DNA. To assess the role of constrained superhelicity in limiting these interactions, we studied the binding of small molecule intercalators to chromatin in close to native conditions by laser scanning cytometry. We demonstrate that the nucleosome-constrained superhelical configuration of DNA is the main barrier to intercalation. As a result, intercalating compounds are virtually excluded from the nucleosome-occupied regions of the chromatin. Binding of intercalators to extranucleosomal regions is limited to a smaller degree, in line with the existence of net supercoiling in the regions comprising linker and nucleosome free DNA. Its relaxation by inducing as few as a single nick per ~50 kb increases intercalation in the entire chromatin loop, demonstrating the possibility for long-distance effects of regulatory potential.


Asunto(s)
Cromatina/química , ADN/química , Sustancias Intercalantes/farmacología , Conformación de Ácido Nucleico , Bibliotecas de Moléculas Pequeñas/farmacología , Membrana Celular/metabolismo , Etidio/metabolismo , Fluorescencia , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Nucleosomas/química , Transcripción Genética
14.
Proc Natl Acad Sci U S A ; 116(42): 21120-21130, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31570576

RESUMEN

Interleukin-2 (IL-2) and IL-15 play pivotal roles in T cell activation, apoptosis, and survival, and are implicated in leukemias and autoimmune diseases. Their heterotrimeric receptors share their ß- and γc-chains, but have distinct α-chains. Anti-IL-2Rα (daclizumab) therapy targeting cell surface-expressed receptor subunits to inhibit T cell proliferation has only brought limited success in adult T cell leukemia/lymphoma (ATL) and in multiple sclerosis. We asked whether IL-2R subunits could already preassemble and signal efficiently in the endoplasmic reticulum (ER) and the Golgi. A combination of daclizumab and anti-IL-2 efficiently blocked IL-2-induced proliferation of IL-2-dependent wild-type (WT) ATL cells but not cells transfected with IL-2, suggesting that in IL-2-producing cells signaling may already take place before receptors reach the cell surface. In the Golgi fraction isolated from IL-2-producing ATL cells, we detected by Western blot phosphorylated Jak1, Jak3, and a phosphotyrosine signal attributed to the γc-chain, which occurred at much lower levels in the Golgi of WT ATL cells. We expressed EGFP- and mCherry-tagged receptor chains in HeLa cells to study their assembly along the secretory pathway. Confocal microscopy, Förster resonance energy transfer, and imaging fluorescence cross-correlation spectroscopy analysis revealed partial colocalization and molecular association of IL-2 (and IL-15) receptor chains in the ER/Golgi, which became more complete in the plasma membrane, further confirming our hypothesis. Our results define a paradigm of intracellular autocrine signaling and may explain resistance to antagonistic antibody therapies targeting receptors at the cell surface.


Asunto(s)
Proliferación Celular/fisiología , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Interleucina-2/metabolismo , Línea Celular Tumoral , Células HeLa , Humanos , Interleucina-15/metabolismo , Janus Quinasa 1/metabolismo , Janus Quinasa 3/metabolismo , Receptores de Interleucina-15/metabolismo , Transducción de Señal/fisiología
15.
Int J Mol Sci ; 20(13)2019 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-31323980

RESUMEN

To elucidate the molecular details of the activation-associated clustering of epidermal growth factor receptors (EGFRs), the time course of the mobility and aggregation states of eGFP tagged EGFR in the membranes of Chinese hamster ovary (CHO) cells was assessed by in situ mobility assays. Fluorescence correlation spectroscopy (FCS) was used to probe molecular movements of small ensembles of molecules over short distances and time scales, and to report on the state of aggregation. The diffusion of larger ensembles of molecules over longer distances (and time scales) was investigated by fluorescence recovery after photobleaching (FRAP). Autocorrelation functions could be best fitted by a two-component diffusion model corrected for triplet formation and blinking. The slow, 100-1000 ms component was attributed to membrane localized receptors moving with free Brownian diffusion, whereas the fast, ms component was assigned to cytosolic receptors or their fragments. Upon stimulation with 50 nM EGF, a significant decrease from 0.11 to 0.07 µm2/s in the diffusion coefficient of membrane-localized receptors was observed, followed by recovery to the original value in ~20 min. In contrast, the apparent brightness of diffusing species remained the same. Stripe FRAP experiments yielded a decrease in long-range molecular mobility directly after stimulation, evidenced by an increase in the recovery time of the slow component from 13 to 21.9 s. Our observations are best explained by the transient attachment of ligand-bound EGFRs to immobile or slowly moving structures such as the cytoskeleton or large, previously photobleached receptor aggregates.


Asunto(s)
Receptores ErbB/química , Recuperación de Fluorescencia tras Fotoblanqueo/métodos , Fotoblanqueo , Espectrometría de Fluorescencia/métodos
16.
Cytometry A ; 93(11): 1106-1117, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30378727

RESUMEN

The heterodimeric receptor complex of IL-9 consists of the cytokine-specific α-subunit and the common γc -chain shared with other cytokines, including IL-2, a central regulator of T cell function. We have shown previously the bipartite spatial relationship of IL-9 and IL-2 receptors at the surface of human T lymphoma cells: in addition to common clusters, expression of the two receptor kinds could also be observed in segregated membrane areas. Here we analyzed further the mutual cell surface organization of IL-9 and IL-2 receptors. Complementing Pearson correlation data with co-occurrence analysis of confocal microscopic images revealed that a minimum degree of IL-9R/IL-2R co-localization exists at the cell surface regardless of the overall spatial correlation of the two receptor kinds. Moreover, our FRET experiments demonstrated molecular scale assemblies of the elements of the IL-9/IL-2R system. Binding of IL-9 altered the structure and/or composition of these clusters. It is hypothesized, that by sequestering receptor subunits in common membrane areas, the overlapping domains of IL-9R and IL-2R provide a platform enabling both the formation of the appropriate receptor complex as well as subunit sharing between related cytokines. © 2018 International Society for Advancement of Cytometry.


Asunto(s)
Linfoma/inmunología , Receptores de Interleucina-2/inmunología , Receptores de Interleucina-9/inmunología , Linfocitos T/inmunología , Línea Celular , Humanos , Transducción de Señal/inmunología
17.
Eur J Pharm Sci ; 123: 371-376, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30076951

RESUMEN

BACKGROUND: Cytotoxic analogs of LHRH (luteinizing hormone-releasing hormone) can be successfully used for the treatment of hormone-dependent cancers such as prostatic, ovarian, endometrial, but our knowledge about their effect on hormone-independent cancers such as human uveal melanoma (UM) is limited. Previously, we have demonstrated that 46% of UM express full-length LHRH receptors. This finding has led us to further examine the mechanism of action of LHRH receptor based targeted therapies in this malignancy. AIMS: In the present study we investigated the cellular uptake of doxorubicin (DOX) and cytotoxic LHRH analog AN-152 (AEZS-108, zoptarelin doxorubicin) on human UM cell lines (OCM3) and its DOX resistant form OCM3DOX320 by confocal laser scanning microscopy. The LHRH receptor expression was characterized by RT-PCR and immunocytochemistry. RESULTS: We were able to establish a new, stable and DOX resistant human UM cell line OCM3DOX320. Our results demonstrated the expression of splice variants and isoforms of receptor for LHRH in OCM3 UM cell line and its doxorubicin resistant form OCM3DOX320. It has been revealed by MTT assay that AN-152 inhibited cell proliferation in a dose dependent manner in OCM3DOX320 cells. Furthermore, receptor-mediated uptake of AN-152 was demonstrated using confocal laser scanning microscopy in both cell line. CONCLUSIONS: Our results suggest that the antiproliferative effect of AN-152 can be detected even if only LHRH receptor isoforms are expressed. Our study also demonstrates the LHRH receptor-mediated uptake of AN-152 in DOX resistant OCM3DOX320 cells. Our experiments provide new insights into a potential targeted therapy of UM and give further details about the accumulation of AN-152 in hormone-independent DOX-resistant cells expressing splice variants of the LHRH receptors.


Asunto(s)
Antineoplásicos/farmacología , Doxorrubicina/análogos & derivados , Resistencia a Antineoplásicos , Hormona Liberadora de Gonadotropina/análogos & derivados , Hormona Liberadora de Gonadotropina/agonistas , Melanoma/tratamiento farmacológico , Neoplasias de la Úvea/tratamiento farmacológico , Antineoplásicos/metabolismo , Transporte Biológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Doxorrubicina/metabolismo , Doxorrubicina/farmacología , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Liberadora de Gonadotropina/farmacología , Humanos , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , Isoformas de Proteínas , Transducción de Señal/efectos de los fármacos , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/metabolismo , Neoplasias de la Úvea/patología
18.
J Neurosci ; 38(35): 7683-7700, 2018 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-30054395

RESUMEN

Aging contributes to cellular stress and neurodegeneration. Our understanding is limited regarding the tissue-restricted mechanisms providing protection in postmitotic cells throughout life. Here, we show that spinal cord motoneurons exhibit a high abundance of asymmetric dimethyl arginines (ADMAs) and the presence of this posttranslational modification provides protection against environmental stress. We identify protein arginine methyltransferase 8 (PRMT8) as a tissue-restricted enzyme responsible for proper ADMA level in postmitotic neurons. Male PRMT8 knock-out mice display decreased muscle strength with aging due to premature destabilization of neuromuscular junctions. Mechanistically, inhibition of methyltransferase activity or loss of PRMT8 results in accumulation of unrepaired DNA double-stranded breaks and decrease in the cAMP response-element-binding protein 1 (CREB1) level. As a consequence, the expression of CREB1-mediated prosurvival and regeneration-associated immediate early genes is dysregulated in aging PRMT8 knock-out mice. The uncovered role of PRMT8 represents a novel mechanism of stress tolerance in long-lived postmitotic neurons and identifies PRMT8 as a tissue-specific therapeutic target in the prevention of motoneuron degeneration.SIGNIFICANCE STATEMENT Although most of the cells in our body have a very short lifespan, postmitotic neurons must survive for many decades. Longevity of a cell within the organism depends on its ability to properly regulate signaling pathways that counteract perturbations, such as DNA damage, oxidative stress, or protein misfolding. Here, we provide evidence that tissue-specific regulators of stress tolerance exist in postmitotic neurons. Specifically, we identify protein arginine methyltransferase 8 (PRMT8) as a cell-type-restricted arginine methyltransferase in spinal cord motoneurons (MNs). PRMT8-dependent arginine methylation is required for neuroprotection against age-related increased of cellular stress. Tissue-restricted expression and the enzymatic activity of PRMT8 make it an attractive target for drug development to delay the onset of neurodegenerative disorders.


Asunto(s)
Daño del ADN/fisiología , Neuronas Motoras/enzimología , Proteína-Arginina N-Metiltransferasas/fisiología , Envejecimiento/metabolismo , Secuencia de Aminoácidos , Animales , Arginina/análogos & derivados , Arginina/metabolismo , Línea Celular , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/fisiología , Roturas del ADN de Doble Cadena , Reparación del ADN , Contracción Isométrica , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Células Musculares/enzimología , Células Musculares/fisiología , Unión Neuromuscular/metabolismo , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Proteína-Arginina N-Metiltransferasas/deficiencia , Proteína-Arginina N-Metiltransferasas/genética , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Proteínas Recombinantes de Fusión/metabolismo , Reflejo Anormal , Prueba de Desempeño de Rotación con Aceleración Constante , Médula Espinal/citología , Médula Espinal/crecimiento & desarrollo
20.
Biophys J ; 114(10): 2473-2482, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29754714

RESUMEN

The high electric field across the plasma membrane might influence the conformation and behavior of transmembrane proteins that have uneven charge distributions in or near their transmembrane regions. Membrane depolarization of T cells occurs in the tumor microenvironment and in inflamed tissues because of K+ release from necrotic cells and hypoxia affecting the expression of K+ channels. However, little attention has been given to the effect of membrane potential (MP) changes on membrane receptor function. Therefore, we studied the influence of membrane de- and hyperpolarization on the biophysical properties and signaling of interleukin-2 (IL-2) and interleukin-15 (IL-15) receptors, which play important roles in T cell function. We investigated the mobility, clustering, and signaling of these receptors and major histocompatibility complex (MHC) I/II glycoproteins forming coclusters in lipid rafts of T cells. Depolarization by high K+ buffer or K+ channel blockers resulted in a decrease in the mobility of IL-2Rα and MHC glycoproteins, as shown by fluorescence correlation spectroscopy, whereas hyperpolarization by the K+ ionophore valinomycin increased their mobility. Contrary to this, the mobility of IL-15Rα decreased upon both de- and hyperpolarization. These changes in protein mobility are not due to an alteration of membrane fluidity, as evidenced by fluorescence anisotropy measurements. Förster resonance energy transfer measurements showed that most homo- or heteroassociations of IL-2R, IL-15R, and MHC I did not change considerably, either. MP changes modulated signaling by the two cytokines in distinct ways: depolarization caused a significant increase in the IL-2-induced phosphorylation of signal transducer and activator of transcription 5, whereas hyperpolarization evoked a decrease only in the IL-15-induced signal. Our data imply that the MP may be an important modulator of interleukin receptor signaling and dynamics. Enhanced IL-2 signaling in depolarized Treg cells highly expressing IL-2R may contribute to suppression of antitumor immune surveillance.


Asunto(s)
Potenciales de la Membrana , Receptores de Interleucina-15/metabolismo , Receptores de Interleucina-2/metabolismo , Transducción de Señal , Linfocitos T/citología , Linfocitos T/metabolismo , Línea Celular Tumoral , Humanos , Fluidez de la Membrana , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...